1. 首页
  2. 资讯

初一数学第十一章知识点总结

本文主要为您介绍初一数学第十一章知识点总结,内容包括求初一数学知识点总结,每章,每节要详细,人教版初一数学复习每一章的重要知识点,初一上册数学要点总结,每个单元都要。代数初步知识 1. 代数式:用运算符号“+ - * ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首

1.求初一数学知识点总结,每章,每节要详细

代数初步知识 1. 代数式:用运算符号“+ - * ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写;(2)数与数相乘,仍应使用“*”乘,不用“· ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a*5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a*应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式; (6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a . 3.几个重要的代数式:(m、n表示整数) (1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ; (2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c; (3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;(4)若b>0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .有理数 1.有理数: (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;(2)有理数的分类: ① ② (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; (4)自然数 0和正整数;a>0 a是正数;a 0,小数-大数。

2.人教版初一数学复习每一章的重要知识点

年级(上)数学知识点归纳与总结一、知识梳理知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数。

它们都是比0小的数。0既不是正数也不是负数。

我们可以用正数与负数表示具有相反意义的量。知识点2:有理数的概念和分类:整数和分数统称有理数。

有理数的分类主要有两种:注:有限小数和无限循环小数都可看作分数。知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。

知识点4:绝对值的概念:(1) 几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;(2) 代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。注:任何一个数的绝对值均大于或等于0(即非负数).知识点5:相反数的概念:(1) 几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;(2) 代数意义:符号不同但绝对值相等的两个数叫做互为相反数。

0的相反数是0。知识点6:有理数大小的比较:有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。

数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。

知识点7:有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数.知识点8:有理数加法运算律:加法交换律:两个数相加,交换加数的位置,和不变。加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数。知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。

知识点11: 乘法与除法1.乘法法则 2.除法法则3.多个非零的数相乘除最后结果符号如何确定知识点12:倒数1. 倒数概念2. 如何求一个数的倒数?(注意与相反数的区别)知识点13:乘方1. 乘方的概念,乘方的结果叫什么?2. 认识底数,指数3. 正数的任何次幂是_________,零的任何次幂________负数的偶次幂是_________奇次幂是________知识点14:混合计算注意:运算顺序是关键,计算时要严格按照顺序运算.考试经常考带乘方的计算.知识点15:科学记数法科学记数法的概念? 注意a的范围。

3.初一上册数学要点总结,每个单元都要

初一数学概念 实数: —有理数与无理数统称为实数。

有理数: 整数和分数统称为有理数。 无理数: 无理数是指无限不循环小数。

自然数: 表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。 数轴: 规定了圆点、正方向和单位长度的直线叫做数轴。

相反数: 只有符号不同的两个数互为相反数。 倒数: 乘积是1的两个数互为倒数。

绝对值: 数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。

一个数加0仍然得这个数。数学定理公式 有理数的运算法则 ⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

⑵减法法则:减去一个数,等于加上这个数的相反数。 ⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。

⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。 角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线。

数学第一章相交线一、邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角。邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角。

二、对顶角:是两条直线相交形成的。两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”。

对顶角的性质:对顶角相等。三、垂直1、垂直:两条直线所成的四个角中,有一个是直角时,就说这两条直线互相垂直。

其中一条叫做另一条的垂线,它们的交点叫做垂足。记做a⊥b垂直是相交的一种特殊情形。

2、垂线的性质:①过一点有且只有一条直线与已知直线垂直;②连接直线外一点与直线上各点的所有线段中,垂线段最短。直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

3、画法:①一靠(已知直线)②二过(定点)③三画(垂线)4、空间的垂直关系四、平行线1、平行线:在同一平面内,不相交的两条直线叫做平行线。记做a‖b2、“三线八角”:两条直线被第三条直线所截形成的① 同位角:“同方同位”即在两条直线的上方或下方,在第三条直线的同一侧。

② 内错角:“之间两侧”即在两条直线之间,在第三条直线的两侧。③ 同旁内角“之间同旁”即在两条直线之间,在第三条直线的同旁。

3、平行公理:经过直线外一点,有且只有一条直线与这条直线平行平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。4、平行线的判定方法① 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;② 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;③ 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;④ 平行于同一条直线的两条直线平行;⑤ 垂直于同一条直线的两条直线平行。

5、平行线的性质:①两条平行线被第三条直线所截,同位角相等; ②两条平行线被第三条直线所截,内错角相等; ③两条平行线被第三条直线所截,同旁内角互补。6、两条平行线的距离:同时垂直于两条平行线并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离。

7、命题:判断一件事情的语句,叫做命题,由题设和结论两部分组成。五平移1、平移:在平面内将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

说明:①、平移不改变图形的形状和大小,改变图形的位置;②“将一个图形沿某个方向移动一定的距离”意味着“图形上的每一点都沿着同一方向移动了相同的距离 ”这也是判断一种运动是否为平移的关键。③图形平移的方向,不一定是水平的2、平移的性质:经过平移,对应线段、对应角分别相等,对应点所连的线段平行且相等。

4.人教版初一下册数学每章知识点总结

初一数学(上)应知应会的知识点 代数初步知识 1. 代数式:用运算符号“+ - * ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写;(2)数与数相乘,仍应使用“*”乘,不用“· ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a*5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a*应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式; (6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a . 3.几个重要的代数式:(m、n表示整数) (1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ; (2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c; (3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;(4)若b>0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .有理数 1.有理数: (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;(2)有理数的分类: ① ② (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; (4)自然数 0和正整数;a>0 a是正数;a a≥0 a是正数或0 a是非负数;a≤ 0 a是负数或0 a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b; (3)相反数的和为0 a+b=0 a、b互为相反数.4.绝对值: (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或 ;绝对值的问题经常分类讨论;(3) ; ;(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|, . 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1 a、b互为倒数;若ab=-1 a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律: (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,. 13.有理数乘方的法则: (1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n . 14.乘方的定义: (1)求相同因式积的运算,叫做乘方; (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; (3)a2是重要的非负数,即a2≥0;若a2+|b|=0 a=0,b=0; (4)据规律 底数的小数点移动一位,平方数的小数点移动二位. 15.科学记数法:把一个大于10的数记成a*10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则. 19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明. 整式的加减 1.单项式:在代数式中,若只含有乘法(。

5.人教版初一数学复习每一章的重要知识点

初一数学概念

实数:

—有理数与无理数统称为实数。

有理数:

整数和分数统称为有理数。

无理数:

无理数是指无限不循环小数。

自然数:

表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。

数轴:

规定了圆点、正方向和单位长度的直线叫做数轴。

相反数:

符号不同的两个数互为相反数。

倒数:

乘积是1的两个数互为倒数。

绝对值:

数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。

数学定理公式

有理数的运算法则

⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

⑵减法法则:减去一个数,等于加上这个数的相反数。

⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。

⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。

6.【初一上册数学知识点概括人教版的,要短一些】

初一上册数学知识点第一章 有理数1正数、负数、有理数、相反数、科学记数法、近似数2数轴:用数轴来表示数3绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零4正负数的大小比较:正数大于零,零大于负数,正数大于负数,绝对值大的负数值反而小 .5有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去减小的绝对值;互为相反数的两数相加为零;一个数加上零,仍得这个数.6有理数的减法(把减法转换为加法)减去一个数,等于加上这个数的相反数.7有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同零相乘,都得零.乘积是一的两个数互为倒数.8有理数的除法(转换为乘法)除以一个不为零的数,等于乘这个数的倒数.9有理数的乘方正数的任何次幂都是正数;零的任何次幂都是负数;负数的奇次幂是负数,负数的偶次幂是正数.10混合运算顺序(1) 先乘方,再乘除,最后加减;(2) 同级运算,从左到右进行;(3) 如果有括号,先做括号内的运算,按照小括号、中括号、大括号依次进行.第二章 整式的加减1 整式:单项式和多项式的统称;2整式的加减(1) 合并同类项(2) 去括号第三章 一元一次方程1 一元一次方程的认识2 等式的性质等式两边加上或减去同一个数或者式子,结果仍然相等;等式两边乘同一个数,或除以同一个不为零的数,结果仍相等.3 解一元一次方程一般步骤:去分母、去括号、移项、合并同类项、系数化为一第四章 图形认识初步1 几何图形:平面图和立体图2 点、线、面、体3 直线、射线、线段两点确定一条直线;两点之间,线段最短4 角角的度量度数角的比较和运算补角和余角:等角的补角和余角相等。

7.初中数学第十一章全等三角形总结

知识梳理; 知识点一:能够完全重合的两个三角形叫全等三角形. 知识点二:(1)全等三角形的对应边相等. (2)全等三角形的对应角相等. 知识点三:(1)SSS (2)SAS (3)ASA (4)AAS (5)HL(只对直角三形来说) 知识点四: ①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. ②全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角. ③有公共边的,公共边一定是对应边. ④有公共角的,公共角一定是对应角. ⑤有对顶角的,对顶角是对应角. ⑥全等三角形中的最大边(角)是对应边(角),最小边(角)是对应边(角) 知识点五:(1)一般来说,要证明相等的两条线段(或两个角),可以从结论出发,看它们分别落在哪两具可能的全等三角形中.(常用的办法) (2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等. (3)可以从已知条件和结论综合考虑,看它们能否一同确定哪两个三角形全等. (4)如无法证证明全等时,可考虑作辅助线的方法,构造成全等三角形. 知识点六:(1)角平分线的性质:角平分线上的点到角两边的距离相等. (2)角平分线的判定:在角的内部到角的两边距离相等的点在角平分线上. (3)三角形三个内角平分线的性质:三角形三条角平分线交于一点,且到三角形三边距离相等. 知识点七:重点 (1)中点性质(中位线、中线、垂直平分线) (2)证明两个三角形全等,则对应边相等 (3)借助中间线段相等. 知识点八:(1)对顶角相等; (2)同角或等角的余角(或补角)相等; (3)两直线平行,内错角相等、同位角相等; (4)角平分线的定义; (5)垂直的定义; (6)全等三角形的对应角相等; (7)三角形的外角等于与它不相邻的两内角和. 知识点九; (1)全等三角形对应角的平分线相等; (2)全等三角形对应边上的中线相等; (3)全等三角形对应边上的高相等. 知识点十:(1)延长中线构造全等三角形(倍长线段法); (2)引平行线构造全等三角形; (3)作垂直线段(或高); (4)取长补短法(截取法). 望采纳!~。

初一数学第十一章知识点总结

本文来自投稿,不代表本站立场,如若转载,请注明出处。