1. 首页
  2. 资讯

点线角知识总结

本文主要为您介绍点线角知识总结,内容包括关于角的知识点,立体几何知识点,求人教版七年级下册数学的线的总结和角的总结。定义: 范围(0 ,90](2) 作法:a.平移法:在异面直线中的一条直线上选择“特殊点”,作另一条直线的平行线,常常利用中位线或成比例

1.关于角的知识点

定义: 范围(0 ,90]

(2) 作法:

a.平移法:在异面直线中的一条直线上选择“特殊点”,作另一条直线的平行线,常常利用中位线或成比例线段引平行线。

b.补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等。

范围:[0,90]

作法:作出直线和平面所成的角,关键是做垂线,找射影

从一条直线出发的两个半平面所组成的图形。二面角的大小用它的平面角来度量。

平面角的做法:a.定义法

b.三垂线定理及其逆定理法

c.垂面法

. 空间角的计算方法都是转化为平面角计算。要充分挖掘图形的性质,寻求平行关系,比如利用“中点”等性质,直线与平面所称的角是平面的一条斜线和它在平面内的射影所成的锐角,我们往往在斜线上取一点向平面引垂线,以形成由平面的斜线、垂线及斜线在在平面上的射影组成的直角三角形。

2. 作二面角的平面角的方法:

a.定义法:在棱上取一点,过这点在两个平面内分别引棱的垂线,这两条射线所称的角,就是二面角的平面角。

b.三垂线定理及逆定理法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点,该点与面上一点连线,和该点与垂足连线所夹的角既未二面角的平面角。

c.作垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,所成角即为二面角的平面角。

3.求角的一般步骤 找出或作出有关的平面角 证明它符合意义 归到某一三角形中进行计算

词条标签:

理学 , 数学 , 学科

2.立体几何知识点

立体几何知识点总结1.直线在平面内的判定(1)利用公理1:一直线上不重合的两点在平面内,则这条直线在平面内.(2)若两个平面互相垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,即若α⊥β,A∈α,AB⊥β,则ABα.(3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面内,即若A∈a,a⊥b,A∈α,b⊥α,则aα.(4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面内,即若Pα,P∈β,β∥α,P∈a,a∥α,则aβ.(5)如果一条直线与一个平面平行,那么过这个平面内一点与这条直线平行的直线必在这个平面内,即若a∥α,A∈α,A∈b,b∥a,则bα.2.存在性和唯一性定理(1)过直线外一点与这条直线平行的直线有且只有一条;(2)过一点与已知平面垂直的直线有且只有一条;(3)过平面外一点与这个平面平行的平面有且只有一个;(4)与两条异面直线都垂直相交的直线有且只有一条;(5)过一点与已知直线垂直的平面有且只有一个;(6)过平面的一条斜线且与该平面垂直的平面有且只有一个;(7)过两条异面直线中的一条而与另一条平行的平面有且只有一个;(8)过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.3.射影及有关性质(1)点在平面上的射影自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点.(2)直线在平面上的射影自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影.和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.(3)图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.当图形所在平面与射影面垂直时,射影是一条线段;当图形所在平面不与射影面垂直时,射影仍是一个图形.(4)射影的有关性质从平面外一点向这个平面所引的垂线段和斜线段中:(i)射影相等的两条斜线段相等,射影较长的斜线段也较长;(ii)相等的斜线段的射影相等,较长的斜线段的射影也较长;(iii)垂线段比任何一条斜线段都短.4.空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等.异面直线所成的角(1)定义:a、b是两条异面直线,经过空间任意一点O,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角.(2)取值范围:0°。

3.求人教版七年级下册数学的线的总结和角的总结

一、班情分析 通过查阅新生录取成绩册,对比小学平时成绩与小学毕业成绩,以及对部分新生的调查摸底,发现本班新生数学成绩参差不齐,两极分化现象比较严重。

虽然不乏高分,但普遍成绩较差。数学不及格的人数达到半数以上,甚至多名学生数学成绩是十几分。

从小学毕业试卷分析可以看出,相当部分学生对数学知识的掌握仅仅局限于单纯的简单计算,缺乏灵活运用的能力;知识点掌握不牢固,缺乏系统性和逻辑性。二、指导思想 全面贯彻党的十七大教育方针,认真落实《数学新课程标准》提出的各项基本教学目标。

从学生实际情况出发,从日常生活入手,结合课堂教学活动,精心设计教学方案,最终圆满完成七年级上册数学教学任务。着力培养学生的感性认识,并将其转化为理性思维。

通过课堂教学、课堂练习、课堂作业、课后巩固等多种方法和手段帮助学生逐步建立数学思维模式;使学生学会观察、学会思考、学会自主探索、学会总结规律的方法;进而提高学生应用数学知识的能力。三、教学目标1、知识与技能目标。

学生通过探究实际问题,认识有理数和整式,掌握必要的运算技能,能运用有理数、代数式探索具体问题中的数量关系和变化规律,并运用代数式进行描述。通过对物体和图形的初步认识,掌握基本的识图与作图技能,认识最基本的图形――点、线和角2、过程与方法目标。

学会抽取实际问题中的数学信息,并用有理数、代数式表示事物之间的相互关系;通过探究点、线、角的性质、图形的变换以及三视图、展开图,初步建立空间观念,发展几何直觉;培养数学方法解决实际问题的思维模式;通过解决问题过程相互合作,养成独立思考与合作交流的习惯。3、情感与态度目标。

通过学习,认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。

认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成独立思考和合作交流相结合的良好思维品质。

了解我国数学家的杰出贡献,增强民族的自豪感,增强爱国主义。四、教材分析 第一章、有理数:本章主要学习有理数的基本概念及运算,它一方面是算术到代数的过渡,另一方面也是为今后的继续学习打下坚实的基础。

本章重点内容是理解有理数的基本概念,并对其分类和比较大小;理解相反数、绝对值、倒数的意义并利用它们的性质进行化简和计算;理解有理数的各种运算法则、运算定律和运算顺序,掌握有理数混合运算法则。本章的难点在于理解有理数的基本概念、运算法则,并将它们应用到实际解题和计算中。

第二章、整式的加减:本章通过日常生活事例引入代数式的概念,进而导出单项式和多项式的概念,并对单项式和多项式的加减运算进行探究,加深学生对式的理解和对数的认识。本章重点内容理解单项式、多项式及同类项的概念,掌握单项式、多项式的概念,掌握合并同类项及去括号的法则及整式的加减运算。

本章难点在于理解合并同类项和去括号的法则,并将其熟练的应用于整式的计算。第三章、一元一次方程:本章主要学习一元一次方程的概念、等式的基本性质、一元一次方程的解法及应用。

既是本学期重点内容之一,也为今后学习其它方程的打下坚实的基础,同时培养学生的方程思想。本章重点内容是理解等式的基本性质;掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1;掌握列方程解决实际问题的基本思路。

本章难点在于解一元一次方程,并利用一元一次方程解决简单的实际问题。第四章、图形认识初步:本章从生活图形、图案入手,通过对点、线、角的探究,培养学生的观察能力和实际动手操作能力,并逐步将感性认识上升到抽象的数学图形。

本章的重点一方面是掌握直线、射线、线段和角的有关性质,并进行线段和差、角的和差的计算;理解互为余角、互为补角的性质及应用。另一方面是着重培养学生看图和识图的能力及动手操作的能力。

本章的难点在于线段和角的有关计算。五、教学措施1、认真研读新课程标准,潜心钻研教材,根据新课程标准,结合学生实际情况,进行针对性的备课,精心设置课堂教学内容和模式。

上好每一堂课,阅好每一份试卷,搞好每一节辅导,组织好每一次测验。2、开展丰富多彩的课外活动,课外调查,向学生介绍数学家、数学史、数学趣题,喻教于乐,激发学生的学习兴趣,挖掘学生的潜能,培养数学特长生。

3、开展分层教学实验,使不同的学生学到不同的知识,使人人能学到有用的知识,使不同的人得到不同的发展,获得成功感,使优生更优,差生逐渐赶上。六、课时安排。

4.初中数学的重点与难点

中考数学公式定理点线角定理: 点的定理:过两点有且只有一条直线 点的定理:两点之间线段最短 角的定理:同角或等角的补角相等 角的定理:同角或等角的余角相等 直线定理:过一点有且只有一条直线和已知直线垂直 直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短平行定理: 经过直线外一点,有且只有一条直线与这条直线平行 推论:如果两条直线都和第三条直线平行,这两条直线也互相平行平行性质: 1、同位角相等,两直线平行 2、内错角相等,两直线平行 3、同旁内角互补,两直线平行平行推论: 1、两直线平行,同位角相等 2、两直线平行,内错角相等 3、两直线平行,同旁内角互补三角形内角定理: 定理:三角形两边的和大于第三边 推论:三角形两边的差小于第三边 三角形内角和定理:三角形三个内角的和等于180° 推论1:直角三角形的两个锐角互余 推论2:三角形的一个外角等于和它不相邻的两个内角的和 推论3:三角形的一个外角大于任何一个和它不相邻的内角全等三角形判定定理:定理:全等三角形的对应边、对应角相等 边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等 角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等 推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等 边边边定理(SSS):有三边对应相等的两个三角形全等 斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等角的平分线定理:定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理: 等腰三角形的两个底角相等(即等边对等角) 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 推论3:等边三角形的各角都相等,并且每一个角都等于60° 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等 角对等边) 推论1:三个角都相等的三角形是等边三角形 推论2:有一个角等于60°的等腰三角形是等边三角形对称定理 定理:线段垂直平分线上的点和这条线段两个端点的距离相等 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 定理1:关于某条直线对称的两个图形是全等形 定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称直角三角形定理:定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半判定定理:直角三角形斜边上的中线等于斜边上的一半勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a²+b²=c²。

勾股定理的逆定理:如果三角形的三边长a、b、c有关系a²+b²=c²,那么这个三角形是直角三角形。多边形内角和定理:定理:四边形的内角和等于360°;四边形的外角和等于360°多边形内角和定理:n边形的内角的和等于(n-2)*180° 推论:任意多边的外角和等于360°平行四边形定理:平行四边形性质定理1:平行四边形的对角相等 2:平行四边形的对边相等 3:平行四边形的对角线互相平分 推论:夹在两条平行线间的平行线段相等平行四边形判定定理1:两组对角分别相等的四边形是平行四边形 2:两组对边分别相等的四边形是平行四边形 3:对角线互相平分的四边形是平行四边形 4:一组对边平行相等的四边形是平行四边形矩形的定理 性质:1:矩形的四个角都是直角 2:矩形的对角线相等 判定:1:有三个角是直角的四边形是矩形 2:对角线相等的平行四边形是矩形菱形性质定理 1:菱形的四条边都相等 2:菱形的对角线互相垂直,并且每一条对角线平分一组对角 菱形面积=对角线乘积的一半,即S=(a*b)÷2菱形判定定理 1:四边都相等的四边形是菱形 2:对角线互相垂直的平行四边形是菱形正方形定理:正方形性质定理1:正方形的四个角都是直角,四条边都相等 2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角中心对称定理:定理1:关于中心对称的两个图形是全等的 2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称等腰梯形性质定理:等腰梯形性质定理:1.等腰梯形在同一底上的两个角相等 2.等腰梯形的两条对角线相等等腰梯形判定定理:1.在同一底上的两个角相等的梯形是等腰梯形 2.对角线相等的梯形是等腰梯形平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰 推论2:经过三角形一边的。

本文来自投稿,不代表本站立场,如若转载,请注明出处。