1. 首页
  2. 资讯

数值分析的知识点总结

本文主要为您介绍数值分析的知识点总结,内容包括数值分析的内容简介,学习数值分析都需要哪些知识呢,学习数值分析都需要哪些知识呢。《数值分析(高校教材)》系统地阐述了数值分析的基本知识,介绍了各种数值计算方法,全书共分十三章。第一章介绍数值计算的基本概念和误差分析的

1.数值分析的内容简介

《数值分析(高校教材)》系统地阐述了数值分析的基本知识,介绍了各种数值计算方法,全书共分十三章。第一章介绍数值计算的基本概念和误差分析的知识;第二章介绍非线性方程的数值解法,包括二分法、迭代法、牛顿法和弦截法;第三章介绍函数插值,包括拉格朗日插值和牛顿插值;第四章介绍数值微分及理查森外推法;第五章介绍数值积分,包括梯形法、龙贝格算法和辛普生法;第六章介绍线性方程组的求解,包括高斯消去法、解三对角线方程组的追赶法、LU分解法、雅可比迭代法、赛德尔迭代法及松弛法;第七章介绍非线性方程组的求解,包括雅可比迭代法、赛德尔迭代法、松弛法及牛顿一拉夫森法;第八章介绍样条函数在插值及数值微分中的应用;第九章介绍回归分析方法,包括一元线性回归、多元线性回归及多项式拟合;第十章介绍常微分方程的数值解,包括求解初值问题的欧拉法、四阶龙格一库塔法和求解边值问题的打靶法、有限差分法;第十一章介绍三种典型偏微分方程的数值解法,包括求解抛物型方程的显式差分、隐式差分和克拉克一尼科尔森六点格式及求解双曲型方程、椭圆型方程的有限差分法;第十二章介绍最优化方法,包括单变量函数优化的黄金分割法、插值法、无约束多变量函数优化的单纯形法和有约束优化的BOX复合形法;第十三章介绍Monte Carlo模拟的应用,包括在数值积分、数学建模、高分子科学研究中的应用。

2.谈谈对数值分析的认识

数值分析(numerical analysis)是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,是数学的一个分支,它以数字计算机求解数学问题的理论和方法为研究对象。为计算数学的主体部分。

数百年前,人类已经将数学应用在建筑、战争、会计,以及许多领域之上,最早的数学大约是西元前1800年巴比伦人泥板(Babylonian tablet )上的计算式子。例如所谓的勾股数(毕氏三元数),(3, 4, 5),是直角三角形的三边长比,在巴比伦泥板上已经发现了开根号的近似值。 数值分析在传统上一直不断的在改进,因为像巴比伦人的近似值,至今仍然是近似值,即使用电脑计算也找不到最精确的值. 运用数值分析解决问题的过程:实际问题→数学模型→数值计算方法→程序设计→上机计算求出结果 数值分析这门学科有如下特点: 1·面向计算机 2·有可靠的理论分析 3·要有好的计算复杂性 4·要有数值实验 5.要对算法进行误差分析 主要内容:插值法,函数逼近,曲线拟和,数值积分,数值微分,解线性方程组的直接方法,解线性方程组的迭代法,非线性方程求根,常微分方程的数值解法。

3.求一篇数值分析实验报告

数值分析实验报告 姓名: 学号: 实验1: 1. 实验项目的性质和任务 通过上机实验,对病态问题、线性方程组求解和函数的数值逼近方法有一个初步理解。

2.教学内容和要求 1)对高阶多多项式 编程求下面方程的解 并绘图演示方程的解与扰动量 的关系。(实验2.6) 2)对 ,生成对应的Hilbert矩阵,计算矩阵的条件数;通过先确定解获得常向量b的方法,确定方程组 最后,用矩阵分解方法求解方程组,并分析计算结果。

(第三章,实验题4) 3)对函数 的Chebyshev点 编程进行Lagrange插值,并分析插值结果。(第四章 实验1) 项目涉及核心知识点 病态方程求解、矩阵分解和方程组求解、Lagrange插值。

重点与难点 算法设计和matlab编程。 1)a.实验方案: 先创建一个20*50的零矩阵X,然后利用Matlab中的roots()和poly()函数将50个不同的ess扰动值所产生的50个解向量分别存入X矩阵中。

然后再将ess向量分别和X的20个行向量绘图。即可直观的看出充分小的扰动值会产生非常大的偏差。

即证明了这个问题的病态性。 b.编写程序: >> X=zeros(20,50); >> ve=zeros(1,21); >> ess=linspace(0,0.00001,50);k=1; >> while k ve(2)=ess(k); X(1:20,k)=roots(poly(1:20)+ve); k=k+1; end >> m=1; >> while m figure(m),plot(ess,X(m,:)); m=m+1; end C.实验结果分析和拓展 由上面的实验结果可以看出一个充分小的扰动值可以让方程的解产生非常大的偏差,而且这个偏差随着ess的变大偏差也随即变大。

但可以看出在相对小的根处根比较稳定,也就是说这些根关于ess并不敏感,而在较大根处时,根很不稳定,即这些解关于ess的变化是敏感的。这就说明了这个问题本身就是一个病态问题,与算法好坏无关。

若扰动在x^18处,只要把程序中的ve(2)改为ve(3)即可,其图形和此类似。 d.实验结论: 高次多项式扰动求方程解问题是一个病态问题。

2)a.实验方案: 先创建一个20*20的零矩阵A,再通过给定解x和Hilbert矩阵求出列向量b,然后通过LU分解法求出方程HX=b的解X,然后将x-X'这一行向量存入A矩阵中,形成一循环,最后,如果Hilbert矩阵非病态的话,则可输出一个20*20的对角矩阵。 b.编写程序: >> n=2; >> A=zeros(20,20); >> while n x=1:n; H=hilb(n); b=H*x'; [L U]=lu(H); y=L\b;X=U\y; A(n,1:n)=x-X'; n=n+1; end Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 4.455948e-017. Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 7.948463e-017. Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 1.798429e-016. Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 7.626119e-018. Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 6.040620e-017. Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 5.444860e-017. >> A A = 1.0e+003 * Columns 1 through 10 0 0 0 0 0 0 0 0 0 0 -0.0000 0.0000 0 0 0 0 0 0 0 0 -0.0000 0.0000 -0.0000 0 0 0 0 0 0 0 -0.0000 0.0000 -0.0000 0.0000 0 0 0 0 0 0 0.0000 -0.0000 0.0000 -0.0000 0.0000 0 0 0 0 0 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0 0 0 0 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 0 0 0 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 0 0 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0001 -0.0003 0.0006 -0.0007 0.0005 0.0000 -0.0000 0.0000 -0.0001 0.0005 -0.0027 0.0096 -0.0223 0.0348 -0.0361 0.0000 -0.0000 0.0000 -0.0004 0.0030 -0.0098 0.0080 0.0593 -0.2570 0.5154 0.0000 -0.0000 0.0000 -0.0001 0.0005 -0.0029 0.0095 -0.0171 0.0086 0.0347 0.0000 -0.0000 0.0000 -0.0000 0.0003 -0.0016 0.0059 -0.0133 0.0145 0.0094 0.0000 -0.0000 0.0000 -0.0001 0.0009 -0.0042 0.0118 -0.0182 0.0082 0.0185 0.0000 0.0000 -0.0000 0.0002 -0.0027 0.0187 -0.0762 0.1806 -0.2249 0.0813 0.0000 0.0000 -0.0000 0.0001 -0.0017 0.0120 -0.0497 0.1224 -0.1699 0.1064 0.0000 -0.0000 0.0000 -0.0003 0.0028 -0.0137 0.0371 -0.0464 -0.0164 0.1243 Columns 11 through 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.0000 0 0 0 0 0 0 0 0 0 -0.0002 0.0000 0 0 0 0 0 0 0 0 0.0238 -0.0091 0.0015 0 0 0 0 0 0 0 -0.6091 0.4336 -0.1727 0.0296 0 0 0 0 0 0 -0.0944 0.1170 -0.0824 0.0318 -0.0053 0 0 0 0 0 -0.0624 0.1107 -0.1110 0.0674 -0.0232 0.0035 0 0 0 0 -0.0289 0.0059 0.0103 0.0082 -0.0263 0。

4.怎样学好数值分析

1 "数值分析"研究对象与特点 "数值分析"是计算数学的一个主要部分。而计算数学是数学科学的一个分支,它研究用计算机求解数学问题的数值计算方法及其软件实现。

计算数学几乎与数学科学的一切分支有联系,它利用数学领域的成果发展了新的更有效的算法及其理论,反过来很多数学分支都需要探讨和研究适用于计算机的数值方法。 因此,"数值分析"内容十分广泛。

但本书作为"数值分析"基础,只介绍科学与工程计算中最常用的基本数值方法,包括线性方程组与非线性方程求根、插值与最小二乘拟合、数值积分与常微分方程数值解法等。这些都是计算数学中最基础的内容。

近几十年来由于计算机的发展及其在各技术科学领域的应用推广与深化,新的计算性学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算经济学等等,不论其背景与含义如何,要用计算机进行科学计算都必须建立相应的数学模型,并研究其适合于计算机编程的计算方法。 因此,计算数学是各种计算性科学的联系纽带和共性基础,是一门兼有基础性、应用性和边缘性的数学学科。

计算数学作为数学科学的一个分支,当然具有数学科学的抽象性与严密科学性的特点,但它又具有广泛的应用性和边缘性特点。 现代科学发展依赖于理论研究、科学实验与科学计算三种主要手段,它们相辅相成,互相独立,可以互相补充又都不可缺少,作为三种科学研究手段之一的科学计算是一门工具性、方法性、边缘性的新学科,发展迅速,它的物质基础是计算机(包括其软硬件系统),其理论基础主要是计算数学。

计算数学与计算工具发展密切相关,在计算机出现以前,数值计算方法只能计算规模小的问题,并且也没形成单独的学科,只有在计算机出现以后,数值计算才得以迅速发展并成为数学科学中一个独立学科--计算数学。当代计算能力的大幅度提高既来自计算机的进步,也来自计算方法的进步,计算机与计算方法的发展是相辅相成、互相促进的。

计算方法的发展启发了新的计算机体系结构,而计算机的更新换代也对计算方法提出了新的标准和要求。例如为在计算机上求解大规模的计算问题、提高计算效率,诞生并发展了并行计算机。

自计算机诞生以来,经典的计算方法业已经历了一个重新评价、筛选、改造和创新的过程,与此同时,涌现了许多新概念、新课题和能充分发挥计算机潜力、有更大解题能力的新方法,这就构成了现代意义下的计算数学。 这也是数值分析的研究对象与特点。

概括地说,数值分析是研究适合于在计算机上使用的实际可行、理论可靠、计算复杂性好的数值计算方法。具体说就是: 第一,面向计算机,要根据计算机特点提供实际可行的算法,即算法只能由计算机可执行的加减乘除四则运算和各种逻辑运算组成。

第二,要有可靠的理论分析,数值分析中的算法理论主要是连续系统的离散化及离散型方程数值求解。有关基本概念包括误差、稳定性、收敛性、计算量、存储量等,这些概念是刻画计算方法的可靠性、准确性、效率以及使用的方便性。

第三,要有良好的复杂性及数值试验,计算复杂性是算法好坏的标志,它包括时间复杂性(指计算时间多少)和空间复杂性(指占用存储单元多少)。 对很多数值问题使用不同算法,其计算复杂性将会大不一样,例如对20阶的线性方程组若用代数中的Cramer法则作为算法求解,其乘除法运算次数需要,若用每秒运算1亿次的计算机计算也要30万年,这是无法实现的,而用"数值分析"中介绍的Gauss消去法求解,其乘除法运算次数只需3 060次,这说明选择算法的重要性。

当然有很多数值方法不可能事先知道其计算量,故对所有数值方法除理论分析外,还必须通过数值试验检验其计算复杂性。本课程虽然只着重介绍数值方法及其理论,一般不涉及具体的算法设计及编程技巧,但作为基本要求仍希望读者能适当做一些计算机上的数值试验,它对加深算法的理解是很有好处的。

讲解: (1)计算数学是研究用计算机求解数学问题的数值计算方法及其软件实现,"数值分析"是计算数学的主要部分。本课程是数值分析的基础部分,只包括非线性方程及线性方程组求解,插值与最小二乘法,数值积分与常微分方程数值解,学习本课程必须具备微积分,线性代数与常微分方程的基础知识和具有编程进行科学计算的技能。

(2)计算数学与计算机发展紧密相关,现代计算数学是科学计算的核心,是各种计算性学科(如计算力学,计算物理,计算化学等等)的共同基础。自从计算机诞生以来,经典计算方法经历了一个重新评价,筛选,改造和创新过程,许多能充分发挥计算机潜力,有更大解题能力的新方法和新概念不断涌现,构成了现代意义下的计算数学。

(3)数值分析是研究适合于计算机进行计算的实际可行,理论可靠计算复杂性好的数值计算方法,它具有以下特点。第一,面向计算机,第二,要有可靠的理论分析,第三,有良好的计算复杂性。

(4)怎样学好"数值分析"课程?提几点意见供参考:一、树立信心,克服"怕"的思想。 二、要先复习相关的数学基础。

三、要搞清每章要解决什么问题?如何解决,搞清各种方法的思想及。

5.怎样学习数值分析

请问你是数学系的吧,只有数学系或者信息与计算科学专业才在本科学数值分析。

首先,必须明白数值分析的用途。通常所学的其他数学类学科都是由公式定理开始,从研究他们的定义,性质再到证明与应用。但实际上,尤其是工程,物理,化学等其它具体的学科。往往你拿到手的只是通过实验得到的数据。如果是验证性试验,需要代回到公式进行分析,验证。但往往更多面对的是研究性或试探性试验,无具体公式定理可代。那就必须通过插值,拟合等计算方法进行数据处理以得到一个相对可用的一般公式。还有许多计算公式理论上非常复杂,在工程中不实用,所以必须根据实际情况把它转化成多项式近似表示。这都是数值分析的任务。

学习数值分析,不应盲目记公式,因为公事通常很长且很乏味。我个人认为,应从公式所面临的问题以及用途出发。比如插值方法,就是就是把实验所得的数据看成是公式的解(好比函数图像上的各个点),由这些解反推出一个近似公式,可以具有局部一般性。再比如说拟合,在插值的基础上考虑实验误差,通过拟合能将误差尽可能缩小,之后目的也是得到一个具有一定条件下的一般性的公式。

好好学吧,数值分析挺实用,与数学建模一起构成数学学科中最实用的两门学科,在工程,经济等许多邻域都有广泛的用途。

本文来自投稿,不代表本站立场,如若转载,请注明出处。