1. 首页
  2. 资讯

北师大七下数学知识点总结

本文主要为您介绍北师大七下数学知识点总结,内容包括北师大版七年级数学下册概念总结,七年级下册的数学概念总结,我要北大版的,拜托叻,北师大版数学七年级下册复习提纲,悬赏100,在线等。一:整式的运算 公式: 1单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。 2一个多项式中,次数最高的项的次数,叫做这

1.北师大版七年级数学下册概念总结

一:整式的运算 公式: 1单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

2一个多项式中,次数最高的项的次数,叫做这个多项式的次数。 3整式的加减法,实质就是将整式中的同类项合并,如果有括号应先去括号,再合并同类项。

4同底数幂相除,底数不变,指数相减。 二:平行线与相交线 公式: 余角和补角定律:1如果两个角的和是直角,称这两个角互为余角。

如果两个角的和是直角,称这两个角互为补角。 三:生活中的数据 1有效数字:对于一个近似数,从左边起第一个不是零的数起,到精确到的数位止,所有的数字叫这个数的有效数字。

2平行线像这样的,不会相交的两条直线,就是互相平行的两条直线,简称平行线。4四边形:两组对边平行。

3统计图:1条形统计图:条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些纸条按一定的顺序排列起来。从条形统计图中很容易看出各种数量的多少。

条形统计图分为:单式条形统计图和复式条形统计图,前者只表示1个项目的数据,后者可以同时表示多个项目的数据。 2折线统计图:折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来,以折线的上升或下降来表示统计数量增减变化。

折线统计图不但可以表示出数量的多少,而且还能够清楚的表示出数量增减变化的情况。折线统计图分单式或复式 3扇形统计图:扇形统计图是用整个圆表示总数用圆内各个扇形 的大小表示各部分数量占总数的百分数。

通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系。用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.作用:能清楚地反映书各部分数同总数之间的关系.扇形面积与其对应的圆心角的关系是:扇形面积越大,圆心角的度数越大。

扇形面积越小,圆心角的度数越小。扇形所对圆心角的度数与百分比的关系是:圆心角的度数=百分比*360度扇形统计图还可以画成圆柱形的。

四:三角形 三角形一公有三种,锐角三角形:并不是有一个锐角的三角形,而是三个角都为锐角,比如等边三角形也是锐角三角形。直角三角形:有一个角为90度的三角形,就是直角三角形。

钝角三角形:有一个角是钝角的三角形叫钝角三角形。任意一个三角形,最多有三个锐角;最多有一个钝角;最多有一个直角。

一个三角形有三条中线,并且都在三角形的内部,相交于一点。三角形的中线是一条线段。

2.七年级下册的数学概念总结,我要北大版的,拜托叻

七年级下册数学知识点(性质.定理.概念) <北师大版>第一章 整式的运算一. 整式※1. 单项式①由数与字母的积组成的代数式叫做单项式。

单独一个数或字母也是单项式。②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※2.多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.二. 整式的加减¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);⑤公式还可以逆用: (m、n均为正整数)四.幂的乘方与积的乘方※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.※2. .※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3※4.底数有时形式不同,但可以化成相同。

※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。

※7.幂的乘方与积乘方法则均可逆向运用。五. 同底数幂的除法※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).※2. 在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如 , ④运算要注意运算顺序. 六. 整式的乘法※1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;④单项式乘法法则对于三个以上的单项式相乘同样适用;⑤单项式乘以单项式,结果仍是一个单项式。

※2.单项式与多项式相乘单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;②运算时要注意积的符号,多项式的每一项都包括它前面的符号;③在混合运算时,要注意运算顺序。

※3.多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。

对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到 七.平方差公式¤1.平方差公式:两数和与这两数差的积,等于它们的平方差,※即 。¤其结构特征是:①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

八.完全平方公式¤1. 完全平方公式:两数和(或差)。

3.七年级下册数学北师大版复习提纲

一、概念知识 1、单项式:数字与字母的积,叫做单项式。

2、多项式:几个单项式的和,叫做多项式。 3、整式:单项式和多项式统称整式。

4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。 5、多项式的次数:多项式中次数最高的项的次数,就是这个多项式的次数。

6、余角:两个角的和为90度,这两个角叫做互为余角。 7、补角:两个角的和为180度,这两个角叫做互为补角。

8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。

9、同位角:在“三线八角”中,位置相同的角,就是同位角。 10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。

11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。 12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。

13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。 14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。 16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。

17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。 18、全等图形:两个能够重合的图形称为全等图形。

19、变量:变化的数量,就叫变量。 20、自变量:在变化的量中主动发生变化的,变叫自变量。

21、因变量:随着自变量变化而被动发生变化的量,叫因变量。 22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。

23、对称轴:轴对称图形中对折的直线叫做对称轴。 24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。

(简称中垂线) 二、计算能力 (A) 整式的计算。 1、整式的加减 去括号,合并同类项! 2、幂运算(七个公式) ① 同底数幂相乘:底数不变,指数相加。

②幂的乘方:底数不变,指数相乘。 ③积的乘方:等于每个因数乘方的积。

④同指数幂相乘:指数不变,底数相乘。采纳把剩下那个下的发给你。

4.北师大版七年级(下)数学,知识点概括总结

北师大版初中数学定理知识点汇总[七年级下册(北师大版)]第一章 整式的运算一. 整式※1. 单项式①由数与字母的积组成的代数式叫做单项式。

单独一个数或字母也是单项式。②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※2.多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.二. 整式的加减¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);⑤公式还可以逆用: (m、n均为正整数)四.幂的乘方与积的乘方※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.※2. .※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3※4.底数有时形式不同,但可以化成相同。

※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。

※7.幂的乘方与积乘方法则均可逆向运用。五. 同底数幂的除法※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).※2. 在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如 , ④运算要注意运算顺序. 六. 整式的乘法※1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;④单项式乘法法则对于三个以上的单项式相乘同样适用;⑤单项式乘以单项式,结果仍是一个单项式。

※2.单项式与多项式相乘单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;②运算时要注意积的符号,多项式的每一项都包括它前面的符号;③在混合运算时,要注意运算顺序。

※3.多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。

对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到 七.平方差公式¤1.平方差公式:两数和与这两数差的积,等于它们的平方差,※即 。¤其结构特征是:①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

八.完全平方公式¤1. 完全平方公式。

5.北师大版七年级下册数学知识结构图

北师大版七年级下册数学知识结构图

一、整式的运算

1、整式

2、整式的加法

3、同底数幂的乘法

4、幂的乘方与积的乘方

5、整式的乘法

6、平方差公式

7、完全平方公式

8、整式的除法

二、平行线与相交线

1、余角与补角

2、探索平行的条件

3、平行线的特征

4、用尺规作线段和角

三、生活中的数据

1、认识百万分之一

2、近似数和有效数字

3、世纪新生儿图

课题学习:制作“人口图”

四、概率

1、游戏公平吗

2、摸到红球的概率

3、停留在黑砖上的概率

五、三角形

1、认识三角形

2、图形的全等

3、全等三角形

4、探索三角形全等的条件

5、作三角形

6、利用三角形全等测距离

7、探索直角三角形全等的条件

六、变量之间的关系

1、小车下滑的时间

2、变化中的三角形

3、温度的变化

4、速度的变化

七、生活中的轴对称

1、轴对称现象

2、简单的轴对称图形

3、探索轴对称的性质

4、利用轴对称设计图案

5、镜子改变了什么

6.七年级下册数学北师大版复习提纲

一、概念知识

1、单项式:数字与字母的积,叫做单项式。

2、多项式:几个单项式的和,叫做多项式。

3、整式:单项式和多项式统称整式。

4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。

5、多项式的次数:多项式中次数最高的项的次数,就是这个多项式的次数。

6、余角:两个角的和为90度,这两个角叫做互为余角。

7、补角:两个角的和为180度,这两个角叫做互为补角。

8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。

9、同位角:在“三线八角”中,位置相同的角,就是同位角。

10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。

11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。

12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。

13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。

14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。

17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

18、全等图形:两个能够重合的图形称为全等图形。

19、变量:变化的数量,就叫变量。

20、自变量:在变化的量中主动发生变化的,变叫自变量。

21、因变量:随着自变量变化而被动发生变化的量,叫因变量。

22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。

23、对称轴:轴对称图形中对折的直线叫做对称轴。

24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线)

二、计算能力

(A) 整式的计算。

1、整式的加减

去括号,合并同类项!

2、幂运算(七个公式)

① 同底数幂相乘:底数不变,指数相加。 ②幂的乘方:底数不变,指数相乘。

③积的乘方:等于每个因数乘方的积。 ④同指数幂相乘:指数不变,底数相乘。采纳把剩下那个下的发给你

7.北师大初一数学下册知识点

初一上册知识点总结1. 代数式:用运算符号“+ - * ÷ …… ”连接数及表示数的字母的式子称为代数式。

注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。2.列代数式的几个注意事项:(1)带分数与字母相乘时,要把带分数改成假分数形式,如a* 应写成 a;(2)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成 的形式;3.几个重要的代数式:(m、n表示整数)(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ; (2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;4.有理数:(1)凡能写成 形式的数,都是有理数。

不是有理数。(2)有理数的分类: ① ② (3)注意:有理数中,1、0、-1是三个特殊的数。

(4)自然数包括:0和正整数。 5.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数; (2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨论;(3) ; ;(4) |a|是重要的非负数,即|a|≥0;注意:|a|•|b|=|a•b|, 。

(3)a2是重要的非负数,即a2≥0;若a2+|b|=0  a=0,b=0;(4)据规律 底数的小数点移动一位,平方数的小数点移动二位。6.科学记数法:把一个大于10的数记成a*10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

7.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。8.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

9.混合运算法则:先乘方,后乘除,最后加减;10.等式的性质: 等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。11.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

①.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0)。②.一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a≠0)。

③.一元一次方程解法的一般步骤: 整理方程,去分母 ,去括号,移项 ,合并同类项,系数化为1 (检验方程的解)。④.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1。

12.列方程解应用题的常用公式:(1)行程问题: 距离=速度•时间 ;(2)工程问题: 工作量=工效•工时 ;(3)比率问题: 部分=全体•比率 ;(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价•折• ,利润=售价-成本, ;(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥= πR2h 。初一下册知识点总结1.同底数幂的乘法:am•an=am+n ,底数不变,指数相加。

2.同底数幂的除法:am÷an=am-n ,底数不变,指数相减。3.幂的乘方与积的乘方:(am)n=amn ,底数不变,指数相乘; (ab)n=anbn ,积的乘方等于各因式乘方的积。

4.零指数与负指数公式: (1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2无意义。

(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01*10-5。5.(1)平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;(2)完全平方公式:① (a+b)2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍; ② (a-b)2=a2-2ab+b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍; ※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc6.配方:(1)若二次三项式x2+px+q是完全平方式,则有关系式: ;※ (2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式。

注意:当x=h时,可求出ax2+bx+c的最大(或最小)值k。※(3)注意: 。

7.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。8.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。

9.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。10.合并同类项法则:系数相加,字母与字母的指数不变。

11.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。

平面几何部分1、补角重要性质:。

8.2012北师大版七年级数学下册的每一章详细知识点总结

七年级数学复习提纲 章丰富的图形世界 1,共同生活的几何形状:圆柱体,立方体,矩形,球 2常见的几何形状分类:球体缸(缸,棱镜,立方体,矩形),圆锥(锥,金字塔) 3的平面图形折叠成三维图形,应注意:的侧面和底部的图形的数目是相等的边的数目的。

4,侧气缸的扩张计划是一个矩形,扩大的两个表面,圆锥面的扩张计划是一个和两个小正方形和一个立方体表面的展开视图的矩形展开地图大和2。 5,特殊的立体图形截面模式:(1)的长方体,正方形横截面:三角形,四边形(矩形,正方形,梯形,平行四边形),五边形。

(2)的横截面的圆柱体是:圆形 (3)的横截面的锥形是:三角形。 (4)球横截面: 6,我们经常会看到图形的主要观点被称为左视图,顶视图见图,见图。

7,常见的三维图形的顶视图 几何长方体立方体圆锥圆柱球 主视图的方,矩形 顶视图的矩形轮/左视图中的一个长方形广场 8点动,线,面进入。 第二章有理数 正面和负面 号外0前面加上一个减号“ - ”号的称为负。

负面意义,相反,被称为学到了0以外的数字(根据需要,有时还添加了正面的积极的“+”)。 2,有理数 (1)的正整数,0,负整数统称,正面得分和负分数统称。

整数和分数统称。 0是既不的数目,也不数目。

(2)通常是在一条直线上的点的数目,这条线被称为数字线。 数轴三要素:原点,单位长度。

上台后采取一个点代表数字0在一条直线上,这一点被调用。 (3)数的两个不同的标志叫对方的相反数。

例如:2的相反数,-2的相反数的相反数 (4)代表被叫号码A的轴数,表示一个点的距离的起源的数字的绝对值| A |。 一个正数的绝对值本身是一个负的绝对值是其相对的数目; 0 0是绝对值。

2负,绝对的值来代替。 3,有理数的加法和减法 (1)合理的加法法则: 1。

加入两个数的相同的符号,以相同的,和的绝对值的总和。绝对值不等于符号相反 ②两个数字相加,查马克,并减去较小的绝对值。

的 彼此相反的两个数的总和为0。同样的总和,③一个数字,这个数字仍然有。

(2)合理的减法法则:减去一个数的相反数加数字。 4,有理数的乘法和除法 (1)理性的乘法法则:两数相乘,相同的号码是积极的,消极的符号相反,其绝对值乘以。

任何数乘以0,0。 (2)两个对等的产品。

例如: - 倒计时;绝对值,相反数。 (3)有理数分割第1条规则:除以由等于0的数,是相等的数量的倒数的相乘。

有理数分规则:两数相除有相同的符号,符号相反的是,和分裂。 0除以任何等于0的数,得到0。

(4)求n个相同的因素计算产品,被称为退化,退化的结果被称为电源(POWER)。的N次方,称为基(碱基数),n被称为索引(指数)。

负奇功率为负,负功率。正任何权力是正数,0的任何权力。

奇次方-1 -1甚至次方。 第三章,字母表示数 连接的数量和说,从信中的字母称为代数运算符号。

2,寻求代数值:值吗?的英文字母必须确保的代数意义的字母,以确保它代表了一些有意义的值。 3,代数系数应包括在前面的这个符号代数的一个只包含字母因素,其系数为1或-1,而不是0。

4,包含在相同的项目,相同的字母。注:同类项的系数无关,无关的字母顺序;几个常量和类似的项目。

5,合并同类项法则:合并同类项,同类项的系数被添加不变。 6中,转到的括号法律:(1)括号前的“+”号中的括号去掉,和前面的“+”符号在原来的括号 (2)章平面图形的位置关系的括号前的城市“ - ”中的括号去掉,并在它的面前 - “原括号 1,直线,射线段 />(1)直线,射线,段区分:行尾是:射线端点:段端点。

(2)段的公理:两点之间,线段(两点之间的所有连接,线段最短)。连接两个点之间的段的长度,称为。

(3)段比较法:堆栈和的方法和措施方法。(4)段的中点:如果M是AB的中点;相反,如果的 线段AB中的点M,和(AB = BM),点M是AB的中点。

例:C是中点的线段AB,AC ==,或2AC == AB, AC = AB,BC = AB。(1)1 = 1 = ; 1轮角= 1度的拳击手=度=完整的革命 (2)角3角测量和表示方法:用三个大写字母表示,或用大写字母(如:ABC。

9.北师大版七年级数学下册概念总结

一:整式的运算

公式:

1单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

2一个多项式中,次数最高的项的次数,叫做这个多项式的次数。

3整式的加减法,实质就是将整式中的同类项合并,如果有括号应先去括号,再合并同类项。

4同底数幂相除,底数不变,指数相减。

二:平行线与相交线

公式:

余角和补角定律:1如果两个角的和是直角,称这两个角互为余角。如果两个角的和是直角,称这两个角互为补角。

三:生活中的数据

1有效数字:对于一个近似数,从左边起第一个不是零的数起,到精确到的数位止,所有的数字叫这个数的有效数字。

2平行线像这样的,不会相交的两条直线,就是互相平行的两条直线,简称平行线。4四边形:两组对边平行。

3统计图:1条形统计图:条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些纸条按一定的顺序排列起来。从条形统计图中很容易看出各种数量的多少。

条形统计图分为:单式条形统计图和复式条形统计图,前者只表示1个项目的数据,后者可以同时表示多个项目的数据。

2折线统计图:折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来,以折线的上升或下降来表示统计数量增减变化。折线统计图不但可以表示出数量的多少,而且还能够清楚的表示出数量增减变化的情况。折线统计图分单式或复式

3扇形统计图:扇形统计图是用整个圆表示总数用圆内各个扇形

的大小表示各部分数量占总数的百分数。通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系。用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.作用:能清楚地反映书各部分数同总数之间的关系.扇形面积与其对应的圆心角的关系是:扇形面积越大,圆心角的度数越大。扇形面积越小,圆心角的度数越小。扇形所对圆心角的度数与百分比的关系是:圆心角的度数=百分比*360度扇形统计图还可以画成圆柱形的。

四:三角形

三角形一公有三种,锐角三角形:并不是有一个锐角的三角形,而是三个角都为锐角,比如等边三角形也是锐角三角形。直角三角形:有一个角为90度的三角形,就是直角三角形。钝角三角形:有一个角是钝角的三角形叫钝角三角形。任意一个三角形,最多有三个锐角;最多有一个钝角;最多有一个直角。

一个三角形有三条中线,并且都在三角形的内部,相交于一点。三角形的中线是一条线段。

北师大七下数学知识点总结

本文来自投稿,不代表本站立场,如若转载,请注明出处。