1. 首页
  2. 资讯

高中数学关于直线与圆的知识点总结

本文主要为您介绍高中数学关于直线与圆的知识点总结,内容包括高中数学关于圆的所有知识总结,'高三数学关于圆的知识点归纳(用表格或框图的形式,高中数学有关圆的知识点、公式、解题方法什么的、拜托了。知识点挺多的,但是考的就这么几种类型的.1 直线与园 垂径定理 圆与直线相交,满足圆心的距离的平方等于半径的平方减去直线与圆相交的弦长的

1.'高三数学关于圆的知识点归纳(用表格或框图的形式

知识点挺多的,但是考的就这么几种类型的.1 直线与园 垂径定理 圆与直线相交,满足圆心的距离的平方等于半径的平方减去直线与圆相交的弦长的一半的平方.2 直线与圆的位置关系 若圆心到直线的距离大于半径,则直线与圆相离,若等于,则相切,若小于,则相交.3 圆与圆的位置关系,题型比较难的,就是利用圆与圆的位置关系计算类比推算椭圆,比如,一个大圆和一个小圆内切小圆半径为4,大圆半径为大圆上一点到小圆圆心为2,大圆半径为10,那么,小圆的圆心轨迹是什么?答 因为两圆内切,根据圆与圆相内切定理,知,小圆圆心和大圆圆心的距离为8,大圆上一点到小圆圆心距离为2,8加2等于大圆半径10即符合椭圆判定定理.即这是一个2c为10以大圆圆心和圆上一点为焦点的椭圆.。

2.【高中数学有关圆的知识点、公式、解题方法什么的、拜托了】

(一)圆的标准方程1.圆的定义:平面内到一定点的距离等于定长的点的轨迹叫做圆.定点叫圆的圆心,定长叫做圆的半径.2.圆的标准方程:已知圆心为(a,b),半径为r,则圆的方程为(x-a)2+(y-b)2=r2.说明:(1)上式称为圆的标准方程.(2)如果圆心在坐标原点,这时a=0,b=0,圆的方程就是x2+y2=r2.(3)圆的标准方程显示了圆心为(a,b),半径为r这一几何性质,即(x-a)2+(y-b)2=r2----圆心为(a,b),半径为r.(4)确定圆的条件由圆的标准方程知有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定.因此,确定圆的方程,需三个独立的条件,其中圆心是圆的定位条件,半径是圆的定型条件.(5)点与圆的位置关系的判定若点M(x1,y1)在圆外,则点到圆心的距离大于圆的半径,即(x-a)2+(y-b)2>r2;若点M(x1,y1)在圆内,则点到圆心的距离小于圆的半径,即(x-a)2+(y-b)2r直线与圆相离;d=r直线与圆相切;0≤d。

3.高中数学中有关圆的知识

〖圆的定义〗 几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

定点称为圆心,定长称为半径。 轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。

集合说:到定点的距离等于定长的点的集合叫做圆。 〖圆的相关量〗 圆周率:圆周长度与圆的直径长度的比叫做圆周率,值是3.14159265358979323846…,通常用π表示,计算中常取3.1416为它的近似值。

圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。

连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。

这个扇形的半径成为圆锥的母线。 〖圆和圆的相关量字母表示方法〗 圆—⊙ 半径—r 弧—⌒ 直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S 〖圆和其他图形的位置关系〗 圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r【圆的平面几何性质和定理】 〖有关圆的基本性质与定理〗 圆的确定:不在同一直线上的三个点确定一个圆。 圆的对称性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线。

圆也是中心对称图形,其对称中心是圆心。 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。 〖有关圆周角和圆心角的性质和定理〗 在同圆或等圆中,如果两个圆心角,两个圆周角,两条弧,两条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

一条弧所对的圆周角等于它所对的圆心角的一半。 直径所对的圆周角是直角。

90度的圆周角所对的弦是直径。 〖有关外接圆和内切圆的性质和定理〗 一个三角形有唯一确定的外接圆和内切圆。

外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。 〖有关切线的性质和定理〗 圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线。 切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。

(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。

切线的长定理:从圆外一点到圆的两条切线的长相等。 〖有关圆的计算公式〗 1.圆的周长C=2πr=πd 2.圆的面积S=πr² 3.扇形弧长l=nπr/180 4.扇形面积S=nπr²/360=rl/2 5.圆锥侧面积S=πrl 【圆的解析几何性质和定理】 〖圆的解析几何方程〗 圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。

圆的离心率e=0,在圆上任意一点的曲率半径都是r。 〖圆与直线的位置关系判断〗 平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是: 1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。

利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下: 如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。 如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。 2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。

令y=b,求出此时的两个x值x1、x2,并且规定x1x2时,直线与圆相离; 当x1

4.高三数学直线和圆的方程题型总结

圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。

圆的离心率e=0,在圆上任意一点的曲率半径都是r。〖圆与直线的位置关系判断〗 平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。

利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1x2时,直线与圆相离当x1

5.高中数学 直线与圆解题思路

首先,把课本上的那些公式要记牢。这是解一切题的基础。

然后才是方法和思路。因为圆是比较特殊的几何图形,所以在解题目的时候要学会运用圆的几何性质,比较常见的是用弦心距和半径来求弦长,用点到直线的距离来判断位置关系等。

此外,如果将直线的方程平方,再与圆方程相减,得到的一次方程就是两交点的直线方程。

有时候会用到圆的参数方程,x=a+rcos@:y=b+rsin@;用它解题有时候会比较简单。例如:(x-1)^2+(y-2)^2=4,求Z=2x+3y的值域。

最后加一点,平时要多做点题,记忆一下典型例题的解题套路,以后再碰到这问题就顺手拈来了~!

6.高中数学有关圆的知识点、公式、解题方法什么的、拜托了

(一)圆的标准方程 1. 圆的定义:平面内到一定点的距离等于定长的点的轨迹叫做圆。

定点叫圆的圆心,定长叫做圆的半径。 2. 圆的标准方程:已知圆心为(a,b),半径为r,则圆的方程为(x-a)2+(y-b)2=r2。

说明: (1)上式称为圆的标准方程。 (2)如果圆心在坐标原点,这时a=0,b=0,圆的方程就是x2+y2=r2。

(3)圆的标准方程显示了圆心为(a,b),半径为r这一几何性质,即(x-a)2+(y-b)2=r2----圆心为(a,b),半径为r。 (4)确定圆的条件 由圆的标准方程知有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定.因此,确定圆的方程,需三个独立的条件,其中圆心是圆的定位条件,半径是圆的定型条件。

(5)点与圆的位置关系的判定 若点M(x1,y1)在圆外,则点到圆心的距离大于圆的半径,即(x-a)2+(y-b)2>r2 ; 若点M(x1,y1)在圆内,则点到圆心的距离小于圆的半径,即(x-a)2+(y-b)2 ;(二)圆的一般方程 任何一个圆的方程都可以写成下面的形式: x2+y2+Dx+Ey+F=0① 将①配方得: ②(x+D/2)2+(y+E/2)2=D2+E2-4F/4 当时,方程①表示以(-D/2,-E/2)为圆心,以为半径的圆; 当时,方程①只有实数解,所以表示一个点(-D/2,-E/2); 当时,方程①没有实数解,因此它不表示任何图形。 故当时,方程①表示一个圆,方程①叫做圆的一般方程。

圆的标准方程的优点在于它明确地指出了圆心和半径,而一般方程突出了方程形式上的特点: (1)和的系数相同,且不等于0; (2)没有xy这样的二次项。 以上两点是二元二次方程表示圆的必要条件,但不是充分条件。

要求出圆的一般方程,只要求出三个系数D、E、F就可以了。(三)直线和圆的位置关系 1. 直线与圆的位置关系 研究直线与圆的位置关系有两种方法: (l)几何法:令圆心到直线的距离为d,圆的半径为r。

d>r直线与圆相离;d=r直线与圆相切;0≤d

△0直线与圆相交。 说明:几何法研究直线与圆的关系是常用的方法,一般不用代数法。

2. 圆的切线方程 (1)过圆x2+y2=r2上一点P(x0,y0)的切线方程是x0x+y0y=r2 (2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的切线方程是(x0-a)(x-a)+(y0-b)(y-b)=r2 ; (3)过圆 x2+y2+Dx+Ey+F=0(D2+E2-4F>0)上一点P(x0,y0)的切线方程是x0x+y0y+D·(x0+x)/2+E·(y0+y)/2+F=0 3. 直线与圆的位置关系中的三个基本问题 (1)判定位置关系。方法是比较d与r的大小。

(2)求切线方程。若已知切点M(x0,y0),则切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2 ; 若已知切线上一点N(x0,y0),则可设切线方程为y-y0=k(x-x0),然后利用d=r求k,但需注意k不存在的情况。

(3)关于弦长:一般利用勾股定理与垂径定理,很少利用弦长公式,因其计算较繁,另外,当直线与圆相交时,过两交点的圆系方程为 x2+y2+Dx+Ey+F+λ(Ax+By+C)=0 (四)圆与圆的位置关系 1. 圆与圆的位置关系问题 判定两圆的位置关系的方法有二:第一种是代数法,研究两圆的方程所组成的方程组的解的个数;第二种是研究两圆的圆心距与两圆半径之间的关系。第一种方法因涉及两个二元二次方程组成的方程组,其解法一般较繁琐,故使用较少,通常使用第二种方法,具体如下: 圆(x-a1)2+(y-b1)2=r12与圆(x-a2)2+(y-b2)2=r22的位置关系,其中r1>0,r2>0 设两圆的圆心距为d,则d=根号下(a1-a2)2+(b1-b2)2 当d>r1+r2时,两圆外离; 当d=r1+r2时,两圆外切; 当|r1-r2| 当d=|r1+r2|时,两圆内切; 当0 两圆位置关系的问题同直线与圆的位置关系的问题一样,一般要转化为距离间题来解决。

另外,我们在解决有关圆的问题时,应特别注意,圆的平面几何性质的应用。

高中数学关于直线与圆的知识点总结

本文来自投稿,不代表本站立场,如若转载,请注明出处。